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Abstract

This work presents a two-dimensional (2D) closed-form solution for the free-vibrations analysis of simply-supported

piezoelectric sandwich plates. It has the originality to consider all components of the electric field and displacement,

thus satisfying exactly the electric equilibrium equation. Besides, the formulation considers full layerwise first-order

shear deformation theory and through-thickness quadratic electric potential. Its independent mechanical and electric

variables are decomposed using Fourier series expansions, then substituted in the derived mechanical and electric 2D

equations of motion. The resulting eigenvalue system is then condensed so that only nine mechanical unknowns are

retained. After its validation on single- and three-layer piezoelectric, and hybrid sandwich plates, the present approach

was then used to analyze thickness modes of a square sandwich plate with piezoceramic faces and elastic cross-ply

composite core. It was found that only the first three thickness modes are global, thus can be modeled by the mixed

equivalent single-layer/layerwise approach, often retained in the literature; the remaining higher thickness modes being

characteristic of sandwich behavior; i.e., dominated by the deformations of either the core or the faces. These results,

together with presented through-thickness variations of the mechanical and electric variables clearly recommend full

layerwise modeling. Several numerical results are provided for future reference for validation of 2D approximate an-

alytical or numerical approaches; in particular, of 2D piezoelectric adaptive finite elements. � 2002 Elsevier Science

Ltd. All rights reserved.

Keywords: Analytical solutions; Vibration; Piezoelectric; Adaptive structures; Simply-supported; Plate; Sandwich theory; Quadratic

electric potential

1. Introduction

Several three-dimensional (3D) analytical solutions have been proposed in the literature for the free-
vibrations analysis of simply-supported piezoelectric laminated plates (Saravanos and Heyliger, 1999).
Hence, the well known Srinivas et al. (1970) exact solution for elastic laminates has been extended to pi-
ezoelectric ones (Heyliger and Saravanos, 1995). Therefore, an eighth-order frequency equation has been
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obtained, but its explicit exact solution was very lengthy and complicated. Moreover, due to the ill-con-
ditioned resulting non-linear eigenvalue problem, the zero-determinant requirement was recognized to be
very difficult to satisfy numerically. Later, the previous procedure, based on exponential expansions of the
transverse dependence of all variables, has been simplified by assuming through-thickness linear electric
potential in each lamina (Batra and Liang, 1997). Thus, a sixth-order frequency equation has been ob-
tained. The piezoelectric layers were supposed so thin that they have been considered as membranes.
However, both solutions (Heyliger and Saravanos, 1995; Batra and Liang, 1997) have the advantage to
present explicit representations of their fundamental variables transverse variations.

In contrary to above approaches, only implicit representation of the independent variables transverse
dependence can be obtained using the state space approach (Xu et al., 1997). Here, also the electric po-
tential was assumed linear. It is then worthy to notice that the latter two solutions (Batra and Liang, 1997;
Xu et al., 1997) did not satisfy exactly the electric charge equation. Moreover, the electromechani-
cal coupling was represented only implicitly since there was no electric fundamental variable in their re-
spective formulations. A new state space formulation had then been proposed recently (Ding et al., 2000). It
retains the electric potential and transverse displacement as state variables, and has the advantage to lead to
lower order than previous conventional eighth-order state equations.

Analytical two-dimensional (2D) solutions for the free-vibration analysis of simply-supported piezo-
electric laminated plates have been presented in the literature only as application examples of other the-
oretical (Mitchell and Reddy, 1995; Shen and Kuang, 1999; Krommer and Irschik, 2000) or numerical
(Correia et al., 2000) analyses. These consider only through-thickness components of the electric field and/
or displacement. Moreover, all of them were based on mixed equivalent single layer (ESL) theory and
layerwise modeling of the mechanical and electric behaviors, respectively. Hence, the third-order shear
deformation theory was retained by Mitchell and Reddy (1995), Shen and Kuang (1999) and Correia et al.
(2000) together with a layerwise linear or quadratic (Mitchell and Reddy, 1995), linear (Shen and Kuang,
1999) and uniform or linear (Correia et al., 2000) electric potential for the piezoelectric layers of the
laminated plate. However, Krommer and Irschik (2000) have combined the Reissner–Mindlin plate theory
with a layerwise quadratic electric potential to study the direct piezoelectric and pyroelectric effects.

As shown in the previous literature analysis, full 2D electromechanical layerwise modeling, retaining all
components of the electric field and displacement, has not yet been considered for the free-vibration
analysis of simply-supported piezoelectric laminated plates. Therefore, it is the aim of the present work
to propose a 2D closed-form solution for the free-vibrations analysis of simply-supported piezoelectric
sandwich plates. These are of practical use in vibration control of plates with either surface-mounted or
embedded piezoelectric actuators and/or sensors. The theoretical formulation is based on Mindlin theory
and through-thickness quadratic electric potential for each layer. Besides, all components of the electric
field and displacement are retained. Thanks to the displacement interface continuities, the fundamental
variables are reduced to in-plane face displacements and rotations, plate transverse deflection, and electric
potential constants of each piezoelectric layer. Hence, an explicit representation of the piezoelectric effect is
achieved and the full electromechanical coupling is maintained. Each of the previous fundamental variables
is next decomposed using Fourier series expansions, then substituted in the 2D electromechanical equations
of motion, derived from the extended principle of virtual works (Benjeddou, 2000a) using stress and electric
displacement resultants. The resulting eigenvalue problem is then condensed so that it is reduced to a
standard one in terms of only nine unknown mechanical constants.

In the following, the electromechanical basic equations and corresponding variational formulation are
first presented. Then, the closed-form solution associated to the simply-supported piezoelectric sandwich
plate formulation is derived. This includes the equations of motion and the derivation of the eigenvalue
problem equation. The proposed approach is first verified through vibration analyses of single- and three-
layer piezoelectric, and hybrid sandwich plates. Then, thickness modes of a square sandwich plate with
piezoceramic faces and elastic cross-ply composite core are presented and analyzed.
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2. Piezoelectric sandwich plate formulation

Consider the three-layer sandwich plate represented on Fig. 1. All layers are assumed piezoelectric,
through-thickness polarized and can have different thickness and material properties. They are supposed to
respect Mindlin plate theory assumptions. The electric potential is considered quadratic in each layer. The
whole plate is supposed simply supported so that transverse and tangential displacements vanish at the
boundaries. Its vertical edges are supposed potential- and stress-free. For the vibration problem in hand,
the upper and lower surfaces are considered stress- and electric potential- or charge-free.

2.1. Basic equations

Following above assumptions, a linear displacement field is retained for the kth layer,

ukxðx; y; z; tÞ ¼ ukðx; y; tÞ þ ðz� zkÞbkxðx; y; tÞ
ukyðx; y; z; tÞ ¼ vkðx; y; tÞ þ ðz� zkÞbkyðx; y; tÞ
ukz ðx; y; z; tÞ ¼ wðx; y; tÞ

ð1Þ

where z 2 ½zk; zkþ1�, zk ¼ ðzk þ zkþ1Þ=2 and k ¼ 1, 2, 3. uk, vk, w, bkx, bky are the kth layer mid-surface dis-
placements along x, y, z and rotations in x–z and y–z planes, respectively.

In each layer, the linear strains are derived from above equation using the usual strain–displacement
relations. Nevertheless, the transverse normal strains are deduced from the zero-normal stress assumption
of the first-order shear deformation theory (FSDT) so that only five strain components are retained,

ekxx ¼ ekxx þ ðz� zkÞvkxx; ekyy ¼ ekyy þ ðz� zkÞvkyy ; ckxy ¼ ekxy þ ðz� zkÞvkxy
ckyz ¼ w;y þ bky ; ckxz ¼ w;x þ bkx

ð2Þ

with

ekxx ¼ uk;x; ekyy ¼ vk;y ; ekxy ¼ uk;y þ vk;x;
vkxx ¼ bkx;x; vkyy ¼ bky;y ; vkxy ¼ bkx;y þ bky;x

where ‘‘,a’’ denoting the space partial differentiation with respect to a ¼ x, y.
The electric potential is assumed through-thickness quadratic in each layer so that,

/kðx; y; z; tÞ ¼ /k0ðx; y; tÞ þ ðz� zkÞ/k1ðx; y; tÞ þ ðz� zkÞ2/k2ðx; y; tÞ ð3Þ

Substituting this equation in the usual electric field–potential relation, the electric field in the kth layer
can be written as,

Fig. 1. The piezoelectric sandwich plate: geometry and notations.
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Ekx ¼ Ek0x þ ðz� zkÞEk1x þ ðz� zkÞ2Ek2x; Eky ¼ Ek0y þ ðz� zkÞEk1y þ ðz� zkÞ2Ek2y
Ekz ¼ Ek0z þ ðz� zkÞEk1z

ð4Þ

with

Ek0x ¼ �/k0;x; E
k
1x ¼ �/k1;x; E

k
2x ¼ �/k2;x; Ek0y ¼ �/k0;y ; E

k
1y ¼ �/k1;y ; E

k
2y ¼ �/k2;y ;

Ek0z ¼ �/k1; E
k
1z ¼ �2/k2

Mechanical strain and electric field components are coupled through linear converse and direct piezo-
electric constitutive equations given by,

rkij ¼ Ckijmne
k
mn � eklijEkl

Dki ¼ ekimne
k
mn þ �kilE

k
l

ð5Þ

where Ckijmn, e
k
imn, �

k
il ði; j; l;m; n ¼ x; y; zÞ are the elastic, piezoelectric and dielectric constants. rkij, D

k
i are the

stress and electric displacement components. They satisfy the following mechanical and electric equations
of harmonic motions,

rkij;j ¼ �qkx2uki
Dki;i ¼ 0

ð6Þ

where x is the circular frequency (rad/s).
The plate is considered simply supported so that its transverse and tangential displacements vanish at its

vertical edges,

uky ¼ ukz ¼ 0 at x ¼ 0; Lx

ukx ¼ ukz ¼ 0 at y ¼ 0; Ly
ð7Þ

The lower, upper and lateral surfaces of the sandwich plate are supposed stress free so that,

r1
iz ¼ 0 at z ¼ � h

2
; r3

iz ¼ 0 at z ¼ þ h
2

rkxx ¼ 0 at x ¼ 0; Lx; rkyy ¼ 0 at y ¼ 0; Ly
ð8Þ

Electrically, the plate is either short- or open- (charge-free) circuited at its upper/lower surfaces, and
short-circuited (potential-free) at its vertical edges,

/1;3 ¼ 0 or D1;3
z ¼ 0 at z ¼ 	 h

2
ð9aÞ

/k ¼ 0 at x ¼ 0; Lx and y ¼ 0; Ly ð9bÞ

The displacements should be made continuous at the sandwich interfaces, in order to observe perfect
bonding between the layers. That is,

u1i ¼ u2i at z ¼ z2

u3i ¼ u2i at z ¼ z3
ð10Þ

Fundamentally, the transverse stresses should be also made continuous at the sandwich plate interfaces so
that,
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r1
iz ¼ r2

iz at z ¼ z2

r3
iz ¼ r2

iz at z ¼ z3
ð11Þ

However, due to FSDT assumptions (layerwise constant shear and zero-normal stresses), previous equa-
tions could be satisfied only a posteriori, using the 3D electromechanical equilibrium equations.

Electrically, all layers are assumed conductive and not electroded on their inner faces. Hence, the electric
potentials should be made continuous at the sandwich plate interfaces,

/1 ¼ /2 at z ¼ z2

/3 ¼ /2 at z ¼ z3
ð12Þ

To respect perfect electric bonding (no interface electrodes), the electric displacements have also to satisfy
the following electric continuity conditions,

D1
z ¼ D2

z at z ¼ z2

D3
z ¼ D2

z at z ¼ z3
ð13Þ

As for the transverse stress continuity conditions, Eq. (11), the previous electric displacement ones could be
enforced only a posteriori. This is again due to the electromechanical coupling and the FSDT assumptions
regarding the normal and transverse shear stresses.

The local electromechanical vibration problem in hand consists of finding the harmonic displacements
and electric potentials satisfying all previous equations, except Eqs. (11) and (13).

2.2. Variational formulation

The variational formulation of the vibration problem in hand is based on the virtual work principle,
extended to piezoelectric media (Tiersten, 1969; Benjeddou, 2000a). For admissible virtual displacements
and electric potentials, this can be written for the piezoelectric sandwich plate as,X3

k¼1

Z
Xk
ðdekijr

k
ij

�
� dEki D

k
i ÞdXk � x2

Z
Xk

duki q
kuki dXk

�
¼ 0 ð14Þ

with rkij, D
k
i satisfying Eq. (5). dekij, dEki follow Eqs. (2) and (4), respectively. The displacement and electric

potential solutions are constrained to verify boundary, Eqs. (7) and (9a, first term), and continuity, Eqs.
(10) and (12), conditions; whereas, the stress and electric displacement solutions have to satisfy boundary
conditions, Eqs. (8) and (9b, second term), only.

To reduce the previous variational equation to a 2D one, the following stress resultants and moments are
introduced for the kth layer,

Nkab ¼
Z zkþ1

zk

rkab dz; Qkaz ¼
Z zkþ1

zk

rkaz dz; Mk
ab ¼

Z zkþ1

zk

ðz� zkÞrkab dz ð15Þ

The zero, first and second order inertia moments are classically defined as,

ðIk0 ; Ik1 ; Ik2 Þ ¼
Z zkþ1

zk

½1; ðz� zkÞ; ðz� zkÞ2�qk dz ð16Þ

Zero, first and second order electric displacement resultants are similarly introduced,

ðDk0i;D
k
1iÞ ¼

Z zkþ1

zk

½1; ðz� zkÞ�Dki dz; D
k
2a ¼

Z zkþ1

zk

ðz� zkÞ2Dka dz ð17Þ
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The 2D variational equation of the vibration problem in hand results from the combined use of Eqs.
(15)–(17) and the through-thickness explicit integration of Eq. (14),X3

k¼1

Z
A
ðdekabN

k
ab

�
þ dvkabM

k
ab þ dckazQ

k
azÞdA�

Z
A
ðdEk0zD

k
0z þ dEk1zD

k
1z þ dEkjaD

k
jaÞdA

� x2

Z
A
½ðduk0aIk0uk0a þ dwIk0wÞ þ ðduk0aIk1b

k
a þ dbkaI

k
1u

k
0aÞ þ dbkaI

k
2b

k
a�dA

�
¼ 0 ð18Þ

where u0x, u0y state for u, v, respectively, and A is the plate middle surface area. Notice that the inertia
virtual work (second line of Eq. (18)) contains all translation, rotary and their coupling inertia contribu-
tions. It is worthy to recall that the electromechanical coupling is present in the previous variational
equation through the stress and electric displacement resultants. These include in fact both mechanical and
electric contributions. Hence, from the zero-normal stress reduced piezoelectric constitutive equations (cf.
Appendix A) and the stress resultants, the following generalized membrane-bending and transverse shear
converse piezoelectric constitutive equations can be written,

N

M

� �ðkÞ

¼
A B

B D

� �ðkÞ
e

v

� �ðkÞ

�
F G

G H

� �ðkÞ E0z

E1z

� �ðkÞ

ð19aÞ

Qxz
Qyz

� �ðkÞ

¼ hk
C55 0
0 C44

� �ðkÞ
cxz
cxz

� �ðkÞ

� Px 0

0 Py

� �ðkÞ
Ex
Ey

� �ðkÞ

ð19bÞ

with

hNiðkÞ ¼ hNxx Nyy NxyiðkÞ; hMiðkÞ ¼ hMxx Myy MxyiðkÞ

heiðkÞ ¼ hexx eyy exyiðkÞ; hviðkÞ ¼ hvxx vyy vxyi
ðkÞ

hEaiðkÞ ¼ hE0a E1a E2aiðkÞ

and

A½ �ðkÞ ¼ hk C
�½ �ðkÞ; B½ �ðkÞ ¼ ðhkÞ2

2
C�½ �ðkÞ; D½ �ðkÞ ¼ ðhkÞ3

12
C�½ �ðkÞ

Ff gðkÞ ¼ hk e�t
� �ðkÞ

; Gf gðkÞ ¼ ðhkÞ2

2
e�t
� �ðkÞ

; Hf gðkÞ ¼ ðhkÞ3

12
e�t
� �ðkÞ

hPxiðkÞ ¼ hk
ðhkÞ2

2

ðhkÞ3

12

* +
Ck55; hPyiðkÞ ¼ hk

ðhkÞ2

2

ðhkÞ3

12

* +
Ck44

Similarly, from the zero-normal stress reduced piezoelectric constitutive equations (cf. Appendix A) and
the electric displacement resultants, the following generalized transverse and in-plane direct piezoelectric
constitutive equations are obtained,

D0z

D1z

( )ðkÞ

¼ FT GT

GT HT

" #ðkÞ
e

v

� �ðkÞ

þ
R00 R01

R01 R11

� �ðkÞ E0z

E1z

� �ðkÞ

ð20aÞ

Djx
Djy

� �ðkÞ

¼ ðhkÞjþ1

jþ 1

e15 0
0 e24

� �ðkÞ cxz
cyz

� �ðkÞ

� Rx 0
0 Ry

� �ðkÞ
Ex
Ey

� �ðkÞ

ð20bÞ
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with

Rk00 ¼ hk��k33; Rk01 ¼
ðhkÞ2

2
��k33; Rk11 ¼

ðhkÞ3

12
��k33

hRaiðkÞ ¼
ðhkÞjþ1

jþ 1

ðhkÞjþ2

jþ 2

ðhkÞjþ3

jþ 3

* +
�kaa

The modified elastic matrix ½C��, piezoelectric coupling vector fe�t g and modified dielectric constant ��33 are
given in Appendix A.

3. Closed-form solution

A displacement harmonic solution, respecting boundary conditions (7) and (8, second part) is,

ukðx; y; tÞ ¼ Uk cos px sin qy expðixtÞ; bkxðx; y; tÞ ¼ Bkx cos px sin qy expðixtÞ
vkðx; y; tÞ ¼ V k sin px cos qy expðixtÞ; bkyðx; y; tÞ ¼ Bky sin px cos qy expðixtÞ
wðx; y; tÞ ¼ W sin px sin qy expðixtÞ

ð21Þ

where, p ¼ mxp=Lx, q ¼ myp=Ly , i
2 ¼ �1. mx, my are non-negative integer mode numbers. This solution

should also respect the continuity conditions of Eq. (10). Therefore, the core displacement and rotation
constants can be expressed in terms of those of the faces,

U 2 ¼ 1

2
ðU 3 þ U 1Þ þ 1

4
ðh1B1

x � h3B3
xÞ; B2

x ¼
U 3 � U 1

h2
� 1

2

h1
h2
B1
x

�
þ h3
h2
B3
x

�
V 2 ¼ 1

2
ðV 3 þ V 1Þ þ 1

4
ðh1B1

y � h3B3
yÞ; B2

y ¼
V 3 � V 1

h2
� 1

2

h1
h2
B1
y

�
þ h3
h2
B3
y

� ð22Þ

so that the unknown mechanical variables of the vibration problem in hand reduce to,

U 1; V 1;B1
x ;B

1
y ;W ;U 3; V 3;B3

x ;B
3
y ð23Þ

An electric potential harmonic solution that satisfies the boundary condition (9b) can be obtained by
choosing its jth ðj ¼ 0; 1; 2Þ in-plane function in the form,

/kj ðx; y; tÞ ¼ Uk
j sin px sin qy expðixtÞ ð24Þ

As for the mechanical constants, the electric ones could be reduced thanks to the electric potential
boundary, Eq. (9a, first term), and continuity, Eq. (12), conditions. Hence, for short-circuited upper and
lower plate electrodes, the following relations hold,

U1
0 ¼

h1
2

U1
1 �

h1
2

� �2

U1
2; U2

0 ¼
h1
2

U1
1 �

h3
2

U3
1 �

h2
2

� �2

U2
2

U3
0 ¼ � h3

2
U3

1 �
h3
2

� �2

U3
2; U2

1 ¼ � h1
h2

U1
1 �

h3
h2

U3
1

ð25Þ

This reduces the unknown electric variables of the electromechanical vibration problem to,

U1
1;U

1
2;U

2
2;U

3
1;U

3
2 ð26Þ

For open-circuited upper and lower plate electrodes, Eq. (9a, second term), only continuity conditions,
Eq. (12), hold, leading to the following relations,
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U1
0 ¼ U2

0 �
h1
2

U1
1 �

h2
2

U2
1 �

h1
2

� �2

U1
2 þ

h2
2

� �2

U2
2

U3
0 ¼ U2

0 þ
h3
2

U3
1 þ

h2
2

U2
1 �

h3
2

� �2

U3
2 þ

h2
2

� �2

U2
2

ð27Þ

These reduce the unknown electric variables of the vibration problem to,

U2
0;U

1
1;U

2
1;U

3
1;U

1
2;U

2
2;U

3
2 ð28Þ

3.1. Equations of motion

The harmonic equations of motion of the piezoelectric sandwich simply-supported plate are obtained
from the 2D variational equation (Eq. (18)) by its integration by parts so that virtual variations of the
unknowns, Eqs. (23), (26) or (28), appear explicitly. Then, terms multiplying each independent variable are
grouped together and made vanish so that the following mechanical equations of motion are obtained,

dU 1 : N 1
xx

�
þ 1

2
N 2
xx

�
;x

þ N 1
xy

�
þ 1

2
N 2
xy

�
;y

� 1

h2
ðM2

xx;x þM2
xy;y � Q2

xzÞ ¼ x2J 1x

dV 1 : N 1
xy

�
þ 1

2
N 2
xy

�
;x

þ N 1
yy

�
þ 1

2
N 2
yy

�
;y

� 1

h2
ðM2

xy;x þM2
yy;y � Q2

yzÞ ¼ x2J 1y

dB1
x : M1

xx

�
� h1
2h2

M2
xx

�
;x

þ M1
xy

�
� h1
2h2

M2
xy

�
;y

� Q1
xz

�
� h1
2h2

Q2
xz

�
þ h1

4
N 2
xx;x

�
þ N 2

xy;y

�
¼ x2C1

x

dB1
y : M1

xy

�
� h1
2h2

M2
xy

�
;x

þ M1
yy

�
� h1
2h2

M2
yy

�
;y

� Q1
yz

�
� h1
2h2

Q2
yz

�
þ h1

4
N 2
xy;x

�
þ N 2

yy;y

�
¼ x2C1

y

dW : ðQ1
xz þ Q2

xz þ Q3
xzÞ;x þ ðQ1

yz þ Q2
yz þ Q3

yzÞ;y ¼ x2J 2z

dU 3 : N 3
xx

�
þ 1

2
N 2
xx

�
;x

þ N 3
xy

�
þ 1

2
N 2
xy

�
;y

þ 1

h2
ðM2

xx;x þM2
xy;y � Q2

xzÞ ¼ x2J 3x

dV 3 : N 3
xy

�
þ 1

2
N 2
xy

�
;x

þ N 3
yy

�
þ 1

2
N 2
yy

�
;y

þ 1

h2
ðM2

xy;x þM2
yy;y � Q2

yzÞ ¼ x2J 3y

dB3
x : M3

xx

�
� h3
2h2

M2
xx

�
;x

þ M3
xy

�
� h3
2h2

M2
xy

�
;y

� Q3
xz

�
� h3
2h2

Q2
xz

�
� h3

4
N 2
xx;x

�
þ N 2

xy;y

�
¼ x2C3

x

dB3
y : M3

xy

�
� h3
2h2

M2
xy

�
;x

þ M3
yy

�
� h3
2h2

M2
yy

�
;y

� Q3
yz

�
� h3
2h2

Q2
yz

�
� h3

4
N 2
xy;x

�
þ N 2

yy;y

�
¼ x2C3

y

ð29Þ

where,

J 1x ¼ ðI10 þ I211ÞU 1 þ I11

�
þ h1

2
I211

�
B1
x þ I213U 3 � h3

2
I213B

3
x

J 3x ¼ ðI30 þ I233ÞU 3 þ I31

�
� h3

2
I233

�
B3
x þ I213U 1 þ h1

2
I213B

1
x ; J 2z ¼ ðI10 þ I20 þ I30 ÞW

C1
x ¼ I11

�
þ h1

2
I211

�
U 1 þ I12

"
þ h1

2

� �2

I211

#
B1
x þ

h1
2
I213U

3 � h1h3
4
I213B

3
x

C3
x ¼ I31

�
� h3

2
I233

�
U 3 þ I32

"
þ h3

2

� �2

I233

#
B3
x �

h3
2
I213U

1 � h1h3
4
I213B

1
x
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with

I211 ¼
I20
4
� I

2
1

h2
þ I22
ðh2Þ2

; I213 ¼
I20
4
� I22
ðh2Þ2

; I233 ¼
I20
4
þ I

2
1

h2
þ I22
ðh2Þ2

The corresponding y-components of J and C terms have the same expressions as the previous x-components
but with V and By instead of U and Bx variables.

The electric equations of motion can be obtained after grouping, then vanishing the terms multiplying
virtual variations of electric unknowns. Therefore, they depend on the electric upper and lower faces electric
boundary conditions. Hence, for short-circuited plate electrodes, the following equations hold for the
electric variables of Eq. (26),

dU1
1 :

eDD12
x;x þ eDD12

y;y þ D
1

0z

�
� h1
h2
D

2

0z

�
¼ 0

dU3
1 :

eDD32
x;x þ eDD32

y;y þ D
3

0z

�
� h3
h2
D

2

0z

�
¼ 0

dU1
2 :

�DD1
x;x þ �DD1

y;y þ 2D
1

1z ¼ 0

dU2
2 :

�DD2
x;x þ �DD2

y;y þ 2D
2

1z ¼ 0

dU3
2 :

�DD3
x;x þ �DD3

y;y þ 2D
3

1z ¼ 0

ð30Þ

where,

eDD12
a ¼ � h1

2
ðD1

0a þ D
2

0aÞ � D
1

1a

�
� h1
h2
D

2

1a

�

eDD32
a ¼ h3

2
ðD3

0a þ D
2

0aÞ � D
3

1a

�
� h3
h2
D

2

1a

�
; �DDka ¼

hk
2

� �2

D
k
0a � D

k
2a

Similar notations are used for open-circuited upper and lower face plate electrodes,

D̂Da ¼ D
1

0a þ D
2

0a þ D
3

0a;
eDDa ¼

h2
2
ðD1

0a � D
3

0aÞ � D
2

1a;
�DDa ¼ � h2

2

� �2

ðD1

0a þ D
3

0aÞ � D
2

2a

eDD1
a ¼

h1
2
D

1

0a � D
1

1a;
�DD1

a ¼
h1
2

� �2

D
1

0a � D
1

2a

eDD3
a ¼ � h3

2
D

3

0a � D
3

1a;
�DD3

a ¼
h3
2

� �2

D
3

0a � D
3

2a

so that the corresponding equations to the electric potential variables of Eq. (28) are,
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dU2
0 : D̂Dx;x þ D̂Dy;y ¼ 0

dU1
1 :

eDD1
x;x þ eDD1

y;y þ D
1

0z ¼ 0

dU2
1 :

eDDx;x þ eDDy;y þ D2

0z ¼ 0

dU3
1 :

eDD3
x;x þ eDD3

y;y þ D
3

0z ¼ 0

dU1
2 :

�DD1
x;x þ �DD1

y;y þ 2D
1

1z ¼ 0

dU2
2 :

�DDx;x þ �DDy;y þ 2D
2

1z ¼ 0

dU3
2 :

�DD3
x;x þ �DD3

y;y þ 2D
3

1z ¼ 0

ð31Þ

It is worthy to notice that although mechanical (29) and electric (30) or (31) equations of motion appear
uncoupled, the electromechanical coupling is in fact present implicitly through the generalized piezoelectric
constitutive equations (Eqs. (19a), (19b), (20a) and (20b)).

3.2. Free-vibrations problem

The generalized constitutive equations (Eqs. (19a), (19b), (20a) and (20b)) are to be expressed in terms of
the mechanical (23) and electric (26) or (28) unknown variables, then substituted into the mechanical (29)
and electric (30) or (31) equations of motion. Therefore, the harmonic vibration problem in hand reduces
to the solution of the following linear generalized eigenvalue problem,

ðK� � x2M�ÞU
�

�
¼ 0

�
ð32Þ

where K� andM� are the stiffness and mass matrices. U
�

�
is the vector of mechanical and electric unknowns.

The linear system of Eq. (32) is of order 14 or 16 depending on the considered electric boundary con-
ditions on upper and lower electrodes. Therefore, to get a unified eigenvalue problem, the above system is
splitted into mechanical and electric separate contributions,

KUU KUU

KUU KUU

� ��
� x2 MUU 0

0 0

� �� U
�
U
�

( )
¼

0
�
0
�

( )
ð33Þ

so that the electric unknowns can be obtained from its second bloc line by,

U
�
¼ �K�1

UUKUUU�
ð34Þ

Substituting this result into the first line of Eq. (33), leads to the following reduced system,

ðK� x2MÞU
�
¼ 0

�
ð35Þ

with

K ¼ KUU � KUUK
�1
UUKUU ; M ¼MUU

The latter reduced system is first solved to obtain the eigen frequencies and corresponding mechanical
constants, then the electric ones are computed a posteriori using Eq. (34).
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4. Numerical validation and analysis

The present 2D closed-form solution has been derived partially using the symbolic software Maple�,
combined with Matlab� for its numerical implementation. To validate the present approach, single- and
three-layer piezoelectric, and hybrid sandwich plates, with side length Lx ¼ Ly ¼ a and total thickness
h ¼ 0:01 m, are analyzed. Computed modal characteristics are compared to those obtained with the 3D
exact solution of Heyliger and Saravanos (1995) for mx ¼ my ¼ 1, and with the mixed FSDT/layerwise finite
element (FE) one of Correia et al. (2000) for various ðmx;myÞ couples. Material properties are those given
in the former reference. In particular, a unit mass density is retained for comparison purpose.

4.1. Single-layer piezoelectric plate

This sub-section aims to check the correct degeneration of the present sandwich formulation to a single-
layer one and to study the influence of the electric boundary conditions and the plate thickness ratio a=h
on the plate piezoelectric behavior. A simply-supported square piezoceramic (PZT-4) plate with variable
thickness ratio, and either short-(U ¼ 0) or open-(Dz ¼ 0) circuited is then considered. The thickness of
each face is made vanish so that the present sandwich formulation reduces to a classical single-layer first-
order shear deformation one.

Results of the first three modes for mx ¼ my ¼ 1 are compared, in Table 1, to those obtained by Heyliger
and Saravanos (1995) using a 3D exact solution. An excellent agreement between present and reference
results is obtained even for the thick plate (a=h ¼ 4), although the Mindlin-type formulation is known to be
suited mainly for relatively thick plates (a=h ¼ 10). Present results were obtained without use of the shear
correction factor required by FSDT. In fact, it was found that the plate frequencies did not vary much with
the shear correction factor value. The good results shown in Table 1 prove the correct degeneration of the
sandwich formulation to the single-layer one, obtained by vanishing each face thickness. Table 1 indicates
that the open-circuit electric boundary condition provides higher frequencies than the short-circuit case,
except for the second mode which is an uncoupled membrane one. Also, it is clear from Table 1 that the
precision of the present closed solution augments with the thickness ratio a=h.

4.2. Piezoelectric sandwich plate

To validate the sandwich aspect of the present closed-form 2D solution, a square piezoelectric three-
layer plate, with thickness ratios a=h ¼ 4 (thick) and a=h ¼ 50 (thin) and either short- or open-circuited on

Table 1

First three circular frequencies (x=100 rad/s) for mx ¼ my ¼ 1 of a square PZT-4 plate

a=h Exact 3D layerwise solution Hey-

liger and Saravanos (1995)

Present 2D sandwich solution Error ð%Þ ¼ 100(2D� 3D)/3D

U ¼ 0 Dz ¼ 0 U ¼ 0 Dz ¼ 0 U ¼ 0 Dz ¼ 0

4 96929.9 98231.7 98246.6 99634.9 1.36 1.43

194255 194255 194255.2 194255.2 0 0

327663 355110 335395.8 361925.6 2.36 1.92

10 18013.4 18077.8 18071.1 18136.4 0.32 0.32

77702.1 77702.1 77702.1 77702.1 0 0

133695 145221 134158.3 145609.7 0.35 0.27

50 746.752 746.873 746.837 746.957 0.01 0.01

15540.4 15540.4 15540.4 15540.4 0 0

26828 29153.3 26831.7 29155.6 0.01 0.01
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its upper and lower surfaces, is analyzed for two configurations: (i) PVDF/PZT-4/PVDF: the plate has
piezoelectric polymeric soft faces and piezoceramic rigid core; (ii) PZT-4/PVDF/PZT-4: the plate has
piezoceramic rigid faces and piezoelectric polymeric soft core. For both configurations, the core is twice
thicker than each face. 3D exact results of Heyliger and Saravanos (1995) are taken as references for the
first five modes (Table 2).

As expected, the present approach is found to be more accurate for the sandwich configuration (ii) with
soft core and rigid faces. This is due to the well representation, by the present approach, of the additional
shear induced by the sliding of the rigid faces (PZT-4) against the soft core (PVDF). However, in the
opposite configuration (i) and for higher modes than 3, where the transverse shear is more present, the
polymeric soft faces are unable to shear the piezoceramic rigid core. The present approach is also less
accurate for thick ða=h ¼ 4Þ configurations. This is inherent to the first-order shear deformation theories
which are in general accurate for a=hP 10. Displacements and electric potential are normalized by their
respective maximum values and represented in Figs. 2 and 3 for short-circuited configurations (i) and (ii),
respectively. They show exact electric potential distribution for both ratios and exact displacement ones for
the thin case only. However, linear, instead of quadratic, in-plane displacements and constant, instead of
linear, deflection (Heyliger and Saravanos, 1995) are obtained in PVDF layers for thick plates.

4.3. Hybrid piezoelectric–elastic sandwich plate

A more realistic adaptive sandwich plate configuration, than previous examples, is now considered. It
consists of a symmetric equal-thickness three-layer cross-ply ð0�=90�=0�Þ graphite/epoxy laminate core

Table 2

First five circular frequencies (x=100 rad/s) for mx ¼ my ¼ 1 of a square piezoelectric sandwich plate

Sandwich scheme a=h Exact 3D layerwise solution

Heyliger and Saravanos (1995)

Present 2D sandwich

solution

Error ð%Þ ¼ 100(2D� 3D)/3D

U ¼ 0 Dz ¼ 0 U ¼ 0 Dz ¼ 0 U ¼ 0 Dz ¼ 0

(i) Configuration PVDF/

PZT-4/PVDF

4 72174.4 72191.5 73969.5 74006 2.49 2.51

194760 194881 197165 197279.6 1.24 1.23

306209 306539 329399.5 329861.6 7.57 7.61

337107 337196 345026.8 345226 2.35 2.38

424602 424664 459653.3 459693.3 8.26 8.25

50 633.417 633.487 633.666 633.735 0.04 0.04

16431.1 16440.9 16432.5 16442.3 0.01 0.01

28535.2 28555.3 28537.6 28557.7 0.01 0.01

268118 271222 292031.9 295866.2 8.92 9.09

353079 362248 379316.5 390810.4 7.43 7.89

(ii) Configuration PZT-

4/ PVDF/ PZT-4

4 58248.7 58354 58339.5 58445.4 0.16 0.15

192408 192436 204629.8 204650 6.35 6.35

271757 271758 275428.9 275429.3 1.35 1.35

329584 329593 355778.2 356148.2 7.95 8.06

363048 364072 413006.4 414334.3 13.8 13.8

50 725.219 725.241 725.230 725.252 0 0

16430.2 16438.8 16436.9 16445.6 0.04 0.04

28535.7 28555.1 28540.4 28559.9 0.02 0.02

159732 159865 161063.6 161204.3 0.83 0.84

226218 226643 228455.9 228903.6 0.99 1.0
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sandwiched between two 0.1h-thick piezoceramic (PZT-4) faces. The composite core material properties are
homogenized from those of Heyliger and Saravanos (1995). Circular frequencies, for mx ¼ my ¼ 1, are
evaluated with the present approach for both short- and open-circuit electric boundary conditions on upper
and lower faces, and for two thickness ratios of the hybrid plate.

The calculated first four circular frequencies are compared in Table 3 to 3D exact ones (Heyliger and
Saravanos, 1995). It is clear that they agree very well with the reference values, in particular for the thin
plate case (a=h ¼ 50). In the latter case, the difference between short- and open-circuit frequencies tend to
vanish.

The present 2D sandwich closed-form solution is now used to show its utility as a reference for 2D FE
solutions. Hence, for both boundary conditions and both thickness ratios, the first five frequency pa-
rameters, k ¼ xa2q1=2=ð2phÞ, of the hybrid plate, calculated with a mixed FSDT (for mechanical behavior)
and linear layerwise (for electric behavior) FE approach (Correia et al., 2000), are compared to those
obtained by the present closed solution (Table 4). It was found that the FE values correspond to the first
frequencies of fixed couples (mx;my). The fundamental frequencies (mx ¼ my ¼ 1) are also compared to the
3D exact ones of Heyliger and Saravanos (1995) and to the full linear layerwise FE results (with constant
deflection) of Saravanos et al. (1997).

Table 4 indicates that the analytical frequencies do not depend much on the electric boundary condi-
tions. This dependence is therefore much higher for FE results. Those of Correia et al. (2000) agree well
with the analytical ones for the open-circuit electric boundary condition and thin plate case only. Higher

Fig. 2. Normalized displacement and electric potential through-thickness variations for the first two modes of a short-circuited PVDF/

PZT-4/PVDF sandwich simply-supported square plate.
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discrepancies appear for the corresponding short-circuited condition, in particular for the fundamental
mode, which does not correspond to neither FE layerwise nor present analytic solutions. This may be due
to nil in-plane electric field and displacement assumptions retained in Correia et al. (2000), but not con-
sidered in the other two solutions. Higher errors for the thin plate case may also be due to possible shear
locking of the FSDT element. Notice also that for the thick plate case, a double-frequency mode was
obtained by Correia et al. (2000). However, the presence of this mode is not confirmed by the visualization
of the six first modes of the short-circuited thick hybrid plate given by the present closed solution (Fig. 4).

Fig. 3. Normalized displacement and electric potential through-thickness variations for the first two modes of a short-circuited PZT-4/

PVDF/PZT-4 sandwich simply-supported square plate.

Table 3

First four thickness (mx ¼ my ¼ 1) circular frequencies (x=100 rad/s) of a square hybrid sandwich plate

a=h Exact 3D layerwise solution

Heyliger and Saravanos (1995)

Present 2D sandwich solution Error ð%Þ ¼ 100(2D� 3D)/3D

U ¼ 0 Dz ¼ 0 U ¼ 0 Dz ¼ 0 U ¼ 0 Dz ¼ 0

4 57074.5 57089.3 58216.1 58231 2.0 2.0

191301 191304 196017.7 196019.9 2.47 2.47

250769 250770 268650 268650.2 7.13 7.13

274941 274941 283754.1 283754.1 3.21 3.21

50 618.118 618.120 618.435 618.437 0.05 0.05

15681.6 15681 15684 15684 0.02 0.02

21492.8 21493 21499.4 21499.6 0.03 0.03

209704 209707 214834 214865.6 2.45 2.46
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5. Thickness modes analysis of a hybrid sandwich plate

After its validation, the present formulation is now used to analyze the thickness modes (mx ¼ my ¼ 1) of
the square short-circuited hybrid sandwich plate used in the previous sub-section. The same piezoelectric
and elastic material properties are also retained here. Therefore, the plate has now in-plane dimensions
Lx ¼ Ly ¼ a ¼ 10h and true mass densities of PZT-4 (7600 kg/m3) and graphite/epoxy (1578 kg/m3) ma-
terials. For each mode, modal shape, and through-thickness variations of the displacements and electric
potential are represented and commented.

5.1. First mode

The first mode of the hybrid sandwich plate is a pure bending one as shown in Fig. 5a. Through-
thickness variations of its displacement components (Fig. 5b) indicate that it can be well represented by a
unique displacement field as used in the classical ESL theory. That is, the in-plane components are through-
thickness linear and nil at the mid-plane z ¼ 0; whereas, the transverse deflection is constant. The electric
potential is linear in the piezoelectric faces and almost constant in the elastic core (Fig. 5b). Therefore, this
mode needs layerwise electric potential for its good representation. Its electromechanical behavior can then
be modeled by a mixed ESL/layerwise approach.

5.2. Second mode

The second mode of the hybrid sandwich plate is a membrane one as can be seen from its modal shape
(Fig. 6a). Through-thickness displacement variations (Fig. 6b) confirm this conclusion since the in-
plane components are constant and the transverse one is nil. Here, the electric potential is piecewise lin-
ear through the plate thickness. Thus, this mode can also be well represented by a mixed ESL/layerwise
model.

Table 4

First five frequency parameters, k ¼ xa2q1=2=ð2phÞ (103 Hz (kg/m)1=2), of a square hybrid sandwich plate

a=h mx my Present 2D sandwich solution

(ref.)

2D FE solution (Q9-FSDT

5P) Correia et al. (2000)

Error (%)¼ 100(FE� ref :)/

ref.

U ¼ 0 Dz ¼ 0 U ¼ 0 Dz ¼ 0 U ¼ 0 Dz ¼ 0

4 1 1 148.246 148.283 142.068 147.489 �4.17 �0.54

145.339a 145.377a 145.323b 151.222b

– – – – 206.304 206.304 – –

– – – – 206.304 206.304 – –

1 2 261.212 261.335 259.586 265.931 �0.62 1.76

2 1 275.112 275.205 276.536 280.328 0.59 1.86

2 2 353.957 354.151 – – – –

1 3 391.924 392.191 – – – –

50 1 1 246.067 246.068 206.304 245.349 �16.16 �0.29

245.941a 245.942a 236.833b 259.173b

1 2 559.615 559.621 519.444 558.988 �7.18 �0.11

2 1 693.601 693.606 663.336 694.196 �4.36 0.08

2 2 967.141 967.155 907.636 962.017 �6.15 �0.53

1 3 1091.458 1091.481 1020.102 1093.006 �6.54 0.14

a 3D layerwise exact solution (Heyliger and Saravanos, 1995).
b 2D layerwise FE solution (w-constant) (Saravanos et al., 1997).
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Fig. 5. The first thickness (mx ¼ my ¼ 1) mode of the short-circuited hybrid sandwich plate.

Fig. 4. First six modes of short-circuited hybrid sandwich simply-supported square plate (a=h ¼ 4).
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5.3. Third mode

The third mode, shown in Fig. 7a, is also a membrane one. However, compared to the second mode, Fig.
7b indicates that the present one is dominated by the ux displacement instead of uy . It has similar electric
potential distribution but in opposite sign. This mode can also be well represented by a mixed ESL/
layerwise model.

5.4. Fourth mode

The modal shape of the fourth mode is presented in Fig. 8a. Its in-plane displacements are linear in the
elastic core and constant in the piezoceramic faces, whereas, the transverse defection is almost nil (Fig. 8b).
The electric potential has the same through-thickness distribution as the first mode. Thus, this mode can
not be well represented by a mixed ESL/layerwise model. Fig. 8a shows clearly the shear of the core by the
faces. Hence, this mode is the first transverse shear mode characterized by the relative displacements of the
faces with respect to the core.

Fig. 7. The third thickness (mx ¼ my ¼ 1) mode of the short-circuited hybrid sandwich plate.

Fig. 6. The second thickness (mx ¼ my ¼ 1) mode of the short-circuited hybrid sandwich plate.
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5.5. Fifth mode

The modal shape of the fifth mode is shown in Fig. 9a. Here, as for the second and third modes, the in-
plane displacement components interchange their roles compared to the previous mode, whereas the electric
potential keeps the same distribution (Fig. 9b). This mode can then be interpreted as the second transverse
shear mode. Notice that the present and previous modes are dominated by the deformation of the core,
whereas, the first three modes are global; i.e. the plate deforms in a whole. Fig. 9b also indicates that this
mode is characteristic of the sandwich behavior, thus cannot be well represented using a mixed ESL/lay-
erwise theory.

5.6. Sixth mode

The sixth mode is represented in Fig. 10a. The latter indicates that there is a relative rotation of the faces
against the core, which has a membrane behavior. This is confirmed by Fig. 10b, showing that the in-plane
displacements have opposite signs with linear and constant variations in the faces and the core, respectively.
The transverse deflection of the whole plate is nil. Electrically, the mode has linear and slightly quadratic

Fig. 8. The fourth thickness (mx ¼ my ¼ 1) mode of the short-circuited hybrid sandwich plate.

Fig. 9. The fifth thickness (mx ¼ my ¼ 1) mode of the short-circuited hybrid sandwich plate.
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electric potentials in the elastic composite core and piezoceramic faces, respectively. Again, this mode
cannot be obtained using a mixed ESL/layerwise method. Notice, that compared to the previous fourth and
fifth modes, the present one is dominated by the deformations of the faces.

5.7. Seventh mode

As for the previous mode, the seventh, represented in Fig. 11a, is dominated by the faces deformations.
Fig. 11b confirms this conclusion and shows that, in contrary to the sixth mode, the present one has
identical in-plane displacements signs. Its electric potential has the same distribution through the plate
thickness. This mode can then be well represented only by a layerwise electromechanical model. It is worthy
to notice that it has almost the same frequency (0.05% relative difference) as the sixth mode.

5.8. Eighth mode

The modal shape of this mode, represented in Fig. 12a, is also dominated by the faces deformations.
However, in comparison with the last two modes, here the core bends (Fig. 12b). Electrically, the present

Fig. 10. The sixth thickness (mx ¼ my ¼ 1) mode of the short-circuited hybrid sandwich plate.

Fig. 11. The seventh thickness (mx ¼ my ¼ 1) mode of the short-circuited hybrid sandwich plate.
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mode has slight quadratic potentials in the piezoelectric faces and nearly constant one in the elastic com-
posite core. It is clear also, from Fig. 12b, that this mode can be well represented only using an electro-
mechanical full layerwise model.

5.9. Ninth mode

This mode, represented in Fig. 13a, has almost the same frequency (0.1% relative difference) and electric
distribution (Fig. 13b) as the previous one, but with in-plane displacement roles that interchange. Again,
due to the full layerwise variations of the displacements and electric potential, this mode will not be well
represented using a ESL/layerwise model.

The previous detailed analysis of the nine thickness modes of the adaptive sandwich plate has shown that
the six last modes, characteristic of its sandwich behavior, are dominated by the displacements of either the
core (fourth and fifth modes) or the faces (sixth to ninth modes). To check this result, the following mean
(barred) and relative (waved) generalized displacements of the faces, augmented by the deflection W, are
defined from Eqs. (22) and (23),

Fig. 12. The eighth thickness (mx ¼ my ¼ 1) mode of the short-circuited hybrid sandwich plate.

Fig. 13. The ninth thickness (mx ¼ my ¼ 1) mode of the short-circuited hybrid sandwich plate.
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U ¼ 1
2
ðU 3 þ U 1Þ; V ¼ 1

2
ðV 3 þ V 1Þ; Bx ¼ 1

2
ðB3

x þ B1
xÞ; By ¼ 1

2
ðB3

y þ B3
yÞ; WeUU ¼ U 3 � U 1; eVV ¼ V 3 � V 1; eBBx ¼ B3

x � B1
x ;

eBBy ¼ B3
y � B1

y

ð36Þ

and analyzed for the nine thickness modes. To identify the dominant variables of each mode, they are
normalized with respect to their maximum value and shown in Table 5. The latter confirms the observations
made in the previous analysis and shows that:

• The bending mode is dominated by the mean rotations and deflection,
• The membrane modes are dominated by the mean in-plane displacements and relative rotations,
• The core sandwich modes (fourth and fifth modes) are dominated by the relative in-plane displacements

and mean rotations,
• The face sandwich modes (sixth to ninth modes) are dominated by either the relative (sixth and seventh

modes) or the mean (eighth and ninth modes) rotations.

It is worthy to notice that for thin faces, for which the transverse shear effect can be neglected, the
relative rotations vanish and the mean ones will equal the deflection first derivatives. Hence, the above nine
fundamental variables, Eq. (36), will reduce to the following five ones only,

U ; V ;W ; eUU ; eVV ð37Þ
Therefore there will be only five thickness modes for fixed in-plane mode indices. The present sandwich
formulation is very suited for this particular case. In fact, the first five modes described in this analysis are
exactly, within a maximum error of 3%, the first five thickness modes given by a specially implemented 3D
state space method (Table 6).

The slight augmentation of the percent difference for the last two modes of Table 6 can be due to the
homogenization of the material properties of the three-layer composite core. This is confirmed by Fig. 14
showing the 3D through-thickness distributions of the mechanical displacements and electric potential. The

Table 6

First five frequency parameters, k ¼ xa2q1=2=ð2phÞ (103 Hz (kg/m)1=2), of a square hybrid sandwich plate (U ¼ 0, a=h ¼ 10, q ¼ qihi=h,
mx ¼ my ¼ 1)

Exact 3D state space solution Present 2D sandwich solution Error ð%Þ ¼ 100(2D� 3D)/3D

214.933 216.602 0.78

1231.799 1247.893 1.31

1702.970 1710.501 0.44

2918.609 2967.704 1.68

3293.101 3392.704 3.02

Table 5

Normalized mean and relative displacements for the thickness modes of the adaptive sandwich plate

Modes 1 2 3 4 5 6 7 8 9

U 0 0.1518 0.1583 0 0 �0.0001 0.0001 0 0

V 0 �0.3008 0.0798 0 0 0.0001 0.0001 0 0

W 0.0322 0 0 0.0039 0.0051 0 0 0 0

Bx �1 0 0 �0.5249 1 0 0 0.2067 �1
By �0.9997 0 0 1 0.1068 0 0 �1 �0.2067eUU �0.0070 0 0 �0.0396 0.1077 0 0 0 �0.0002eVV �0.0075 0 0 0.1355 0.0305 0 0 �0.0002 0eBBx 0 1 1 0 0 �0.5975 1 0 0eBBy 0 �0.9020 0.2169 0 0 1 0.5975 0 0
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in-plane displacements are slightly piecewise linear through the composite core, instead of being only linear
as retained in the present 2D formulation. Fig. 14 is to be compared to Figs. 8b and 9b. These indicate
evidently the good approximations of the in-plane displacements by the present 2D sandwich formulation
compared to the exact 3D solution.

6. Conclusions

A 2D closed-form solution for the free-vibrations analysis of simply supported piezoelectric sandwich
plates has been presented and validated. It has the originality to consider a quadratic electric potential and
FSDT for each layer. Also, no simplifying assumptions were made regarding the in-plane electric field and
displacement components. Hence, the electric charge equation was exactly satisfied. Generalized piezo-
electric constitutive equations for the introduced stress and electric displacement resultants and 2D me-
chanical and electric equations of motion of the piezoelectric-adaptive sandwich plate were also derived for
the first time. After its validation on single- and three-layer piezoelectric, and hybrid configurations, the
present approach has been used to explore the thickness modes of a square relatively thick sandwich plate
with piezoelectric faces and symmetric cross-ply graphite/epoxy composite laminate core. From this modal
analysis, it was found that:

1. Only the first three modes were global so that the plate deforms in a whole. The remaining higher modes
were found to be characteristic of sandwich behavior. That is, they are dominated by the deformation of
either the core or the faces.

2. The electric potential in the piezoelectric faces was found to be slightly quadratic only for the last four
modes dominated by the deformations of the faces. Quadratic electric potential is necessary for satisfying
the electric charge equilibrium equation, as demonstrated in Rahmoune et al. (1998) using a mathemat-
ical asymptotic technique.

3. Only the global modes can be well represented by a mixed ESL/layerwise modeling approach; i.e. with a
unique displacement field and layerwise electric potential. The latter was necessary for all modes of the
hybrid plate. Hence, these results validate the electromechanical full layerwise assumptions retained in
the present closed-form solution.

Fig. 14. Displacements and electric potential 3D through-thickness distributions of the (a) fourth and (b) fifth thickness modes of

a relatively thick (a=h ¼ 10) SC (U ¼ 0) adaptive sandwich simply-supported plate.
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4. The sandwich modes, dominated by either the core or the faces deformations, can be explicitly charac-
terized by the faces mean and relative in-plane displacements and bending rotations. Augmented by the
deflection, they can be retained as independent variables for developing a simple and accurate adaptive
sandwich plate FE.

5. Both frequencies and through-thickness distributions of the mechanical displacements and electric po-
tential are very accurate with regards to the corresponding exact 3D state space solution, implemented
for comparison purpose. In particular, the first five 2D thickness modes correspond to the 3D ones with-
in 3% maximum error.

The present 2D closed-form solution has been already used for physical understanding of the electro-
mechanical behavior of piezoelectric adaptive sandwich plates, for which this analysis has shown the ne-
cessity of a full layerwise modeling. It is clear then, as was demonstrated in the validation and analysis
sections, that it can be useful as a reference for development or validation of other 2D approximate an-
alytical or numerical approaches, in particular for 2D piezoelectric adaptive FEs. For the latter, this kind of
analytical solution is more suitable to be taken as reference since it eliminates the intrinsic error due to the
2D approximation. The present approach is currently being extended to consider the shear actuation/
sensing mechanism obtained with in-plane polarized piezoelectric materials (Benjeddou, 2000b,c).

Appendix A. Zero-normal stress reduced piezoelectric constitutive equations

The 3D constitutive equations (Eq. (5)) applied to an orthotropic piezoelectric material can be written in
its material axes (1,2,3), using the usual condensed (engineering) notations for the material constants as,

r11

r22

r33

r23

r13

r12

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2666666664

3777777775

e11
e22
e33
c23
c13
c12

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
�

0 0 e13
0 0 e23
0 0 e33
0 e24 0

e15 0 0

0 0 0

2666666664

3777777775
E1

E2

E3

8><>:
9>=>; ðA:1aÞ

E1

E2

E3

8<:
9=; ¼

0 0 0 0 e15 0
0 0 0 e24 0 0
e13 e23 e33 0 0 0

24 35
e11
e22
e33
c23
c13
c12

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
þ

�11 0 0
0 �22 0
0 0 �33

24 35 E1

E2

E3

8<:
9=; ðA:1bÞ

Due to the zero-normal stress assumption of the FSDT and decomposing the stresses and electric dis-
placements into in-plane and transverse components, the converse piezoelectric constitutive equation, Eq.
(A.1a), reduces to,

r11

r22

r12

8<:
9=; ¼

C�
11 C�

12 0
C�

12 C�
22 0

0 0 C66

24 35 e11
e22
c12

8<:
9=;�

e�31
e�32
0

8<:
9=;E3 or rf g ¼ C�½ � ef g � e�t

� �
E3 ðA:2aÞ

r23

r13

� �
¼ C44 0

0 C55

� �
c23
c13

� �
� 0 e24

e15 0

� �
E1

E2

� �
or sf g ¼ Cs½ � cf g � es½ �T Ep

� �
ðA:2bÞ
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with

C�
ab ¼ Cab � Ca3Cb3=C33; e�3a ¼ e3a � e33Ca3=C33

Similarly, the direct piezoelectric constitutive equation, Eq. (A.1b), reduces to,

D1

D2

� �
¼ 0 e15

e24 0

� �
c23
c13

� �
þ �11 0

0 �22

� �
E1

E2

� �
or Dp

� �
¼ es½ � cf g þ ½�p� Ep

� �
ðA:3aÞ

D3 ¼ ðe�31e11 þ e�32e22Þ þ ��33E3 or D3 ¼ he�t i ef g þ ��33E3 ðA:3bÞ

with

��33 ¼ �33 � e33e33=C33
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